Affiliation: Jiangsu University, Zhenjiang, Jiangsu Province,
University / Institution: Jiangsu University
Department: Department of Plant Ecology
Designation: Professor
Email: liuyuexue623@ujs.edu.cn
Country: China
Dr. Congyan Wang is a Professor and Ph.D. Supervisor at the School of Environment and Safety Engineering, Jiangsu University, China. He earned his Doctorate in Biology from Nanjing University, specializing in Invasion Biology. His research focuses on the ecological effects, environmental risks, and mechanistic understanding of invasive plant species. His work integrates plant ecology, community dynamics, and plant–soil–microbe interactions to explore how invasive species establish, compete, and impact biodiversity.
Dr. Wang has made several theoretical contributions to invasion ecology, including the development of indices such as the invasion intensity index, relative invasiveness index, community invasibility index, and the “seesaw theory” to explain competitive plant growth strategies in invasive contexts. He has published extensively in high-impact journals such as Science of the Total Environment, Plant Diversity, and Plants.
He currently serves on multiple editorial boards, including mSystems, Horticulturae, Journal of Plant Ecology, iMeta, Journal of Forestry Research, and Microorganisms. He is also the Lead Guest Editor of several special issues focusing on invasive plant ecology in journals like Plants, Microorganisms, Forests, and Sustainability.
With a strong interdisciplinary background, Dr. Wang contributes significantly to the advancement of plant invasion science, offering both conceptual frameworks and practical risk assessment tools for ecosystem management and biodiversity conservation.
1. Wang CY*, Cheng HY, Wang S, Wei M, Du DL. 2021. Plant community and the influence of plant taxonomic diversity on community stability and invasibility: A case study based on Solidago canadensis L. Science of the Total Environment 768: 144518. DOI: 10.1016/j.scitotenv.2020.144518.
2. Wang CY*, Wei M, Wang S, Wu BD, Cheng HY. 2020. Erigeron annuus (L.) Pers. and Solidago canadensis L. antagonistically affect community stability and community invasibility under the co-invasion condition. Science of the Total Environment 716: 137128. DOI: 10.1016/j.scitotenv.2020.137128. (ESI Highly Cited Paper)
3. Wang CY*, Yu YL, Cheng HY, Du DL*. 2022. Which factor contributes most to the invasion resistance of native plant communities under the co-invasion of two invasive plant species? Science of the Total Environment 813: 152628. DOI: 10.1016/j.scitotenv.2021.152628.
4. Wang CY*, Jiang K, Zhou JW, Wu BD. 2018. Solidago canadensis invasion affects soil N-fixing bacterial communities in heterogeneous landscapes in urban ecosystems in East China. Science of the Total Environment 631‒632: 702‒713. DOI: 10.1016/j.scitotenv.2018.03.061. (ESI Highly Cited Paper)
5. Wang CY*, Li Y, Li C, Zhong SS, Xu ZL, Yu YL, Du DL*. 2023. A method for quantifying relative competitive advantage and the combined effect of co-invasion for two invasive plants. Plant Diversity 45: 358‒361. DOI: 10.1016/j.pld.2023.01.005.
6. Wang CY*, Liu YS, Li C, Li Y, Du DL*. 2024. The invasive plant Amaranthus spinosus L. exhibits a stronger resistance to drought than the native plant A. tricolor L. under co-cultivation conditions when treated with light drought. Plants 13: 2251. DOI: 10.3390/plants13162251.
7. Wang CY*, Wei M, Wang S, Wu BD, Du DL. 2020. Cadmium influences the litter decomposition of Solidago canadensis L. and soil N-fixing bacterial
5/16
communities. Chemosphere 246: 125717. DOI: 10.1016/j.chemosphere.2019.125717.
(ESI Highly Cited Paper) 8. Wang CY*, Zhou JW, Liu J, Jiang K, Du DL*. 2017. Responses of soil N-fixing bacteria communities to Amaranthus retroflexus invasion under different forms of N deposition. Agriculture, Ecosystems & Environment 247: 329‒336.
DOI: 10.1016/j.agee.2017.07.012.
9. Wang CY*, Jiang K, Zhou JW, Liu J, Wu BD. 2018. Responses of soil N-fixing bacterial communities to redroot pigweed (Amaranthus retroflexus L.) invasion under Cu and Cd heavy metal soil pollution. Agriculture, Ecosystems & Environment 267: 15‒22. DOI: 10.1016/j.agee.2018.08.002.
10. Wang CY*, Wu BD, Jiang K, Zhou JW, Du DL. 2019. Canada goldenrod invasion affect taxonomic and functional diversity of plant communities in heterogeneous landscapes in urban ecosystems in East China. Urban Forestry & Urban Greening 38: 145‒156. DOI: 10.1016/j.ufug.2018.12.006.
11. Wang CY*, Cheng HY, Wei M, Wang S, Wu BD, Du DL. 2021. Plant height and leaf size: Which one is more important in affecting the successful invasion of Solidago canadensis and Conyza canadensis in urban ecosystems? Urban Forestry & Urban Greening 59: 127033. DOI: 10.1016/j.ufug.2021.127033.
12. Wang CY*, Zhou JW, Liu J, Du DL*. 2017. Responses of soil N-fixing bacteria communities to invasive species over a gradient of simulated nitrogen deposition. Ecological Engineering 98: 32‒39. DOI: 10.1016/j.ecoleng.2016.10.073.
13. Wang CY*, Jiang K, Liu J, Zhou JW, Wu BD. 2018. Moderate and heavy Solidago canadensis L. invasion are associated with decreased taxonomic diversity but increased functional diversity of plant communities in East China. Ecological Engineering 112: 55‒64. DOI: 10.1016/j.ecoleng.2017.12.025. (ESI Highly Cited Paper)
14. Wang CY*, Wu BD, Jiang K, Zhou JW, Liu J, Lv YN. 2019. Canada goldenrod invasion cause significant shifts in the taxonomic diversity and community stability of plant communities in heterogeneous landscapes in urban ecosystems in East China. Ecological Engineering 127: 504‒509. DOI: 10.1016/j.ecoleng.2018.10.002.
15. Wang CY*, Cheng HY, Wu BD, Jiang K, Wang S, Wei M, Du DL. 2021. The functional diversity of native ecosystems increases during the major invasion by the invasive alien species, Conyza canadensis. Ecological Engineering 159: 106093. DOI: 10.1016/j.ecoleng.2020.106093.
16. Wang CY*, Xiao HG, Zhao LL, Liu J, Wang L, Zhang F, Shi YC, Du DL*. 2016. The allelopathic effects of invasive plant Solidago canadensis on seed germination and growth of Lactuca sativa enhanced by different types of acid deposition.
6/16
Ecotoxicology 25: 555‒562. DOI: 10.1007/s10646-016-1614-1.
(ESI Highly Cited Paper) 17.
Wang CY*, Jiang K, Wu BD, Zhou JW, Lv YN. 2018. Silver nanoparticles with different particle sizes enhance the allelopathic effects of Canada goldenrod on the seed germination and seedling development of lettuce. Ecotoxicology 27: 1116‒1125. DOI: 10.1007/s10646-018-1966-9.
18. Wang CY*, Wu BD, Jiang K. 2019. Allelopathic effects of Canada goldenrod leaf extracts on the seed germination and seedling growth of lettuce reinforced under salt stress. Ecotoxicology 28: 103‒116. DOI: 10.1007/s10646-018-2004-7.
19. Wang CY*, Zhou JW, Liu J, Jiang K, Xiao HG, Du DL*. 2018. Responses of the soil fungal communities to the co-invasion of two invasive species with different cover classes. Plant Biology 20: 151‒159. DOI: 10.1111/plb.12646.
20. Wang CY*, Zhou JW, Jiang K, Liu J, Du DL*. 2017. Responses of soil N-fixing bacteria communities to invasive plant species under different types of simulated acid deposition. Science of Nature 104: 43. DOI: 10.1007/s00114-017-1463-7.
21. Wang CY*, Zhou JW, Liu J, Jiang K. 2017. Differences in functional traits between invasive and native Amaranthus species under different forms of N deposition. Science of Nature 104: 59. DOI: 10.1007/s00114-017-1482-4.
22. Wang CY*, Jiang K, Zhou JW, Xiao HG, Wang L. 2018. Responses of soil bacterial communities to Conyza canadensis invasion with different cover classes along a climatic gradient. CLEAN-Soil, Air, Water 46: 1800212. DOI: 10.1002/clen.201800212.
23. Wang CY*, Liu J, Xiao HG, Zhou JW. 2016. Differences in leaf functional traits between Rhus typhina and native species. CLEAN-Soil, Air, Water 44: 1591‒1597. DOI: 10.1002/clen.201600144.
24. Wang CY*, Wu BD, Jiang K, Zhou JW. 2018. Differences in functional traits between invasive and native Amaranthus species under simulated acid deposition with a gradient of pH levels. Acta Oecologica 89: 32‒37. DOI: 10.1016/j.actao.2018.04.006.
25. Wang CY*, Zhou JW, Jiang K, Liu J. 2017. Differences in leaf functional traits and allelopathic effects on seed germination and growth of Lactuca sativa between red and green leaves of Rhus typhina. South African Journal of Botany 111: 17‒22. DOI: 10.1016/j.sajb.2017.03.019.
26. Wang CY*, Wu BD, Jiang K, Zhou JW. 2018. Effects of different types of heavy metal pollution on functional traits of invasive redroot pigweed and native red amaranth. International Journal of Environmental Research 12: 419‒427. DOI: 10.1007/s41742-018-0101-3.
27. Wang CY*, Zhou JW, Liu J, Xiao HG, Wang L. 2017. Functional traits and
7/16
reproductive allocation strategy of Conyza canadensis as they vary by invasion degree along a latitude gradient. Polish Journal of Environmental Studies 26: 1289‒1297. DOI: 10.15244/pjoes/66175. 28.
Wang CY*, Zhou JW, Liu J, Wang L, Xiao HG. 2017. Reproductive allocation strategy of two herbaceous invasive plants across different cover classes. Polish Journal of Environmental Studies 26: 355‒364. DOI: 10.15244/pjoes/64240.
29. Wang CY*, Xiao HG, Liu J, Zhou JW, Du DL*. 2016. Insights into the effects of simulated nitrogen deposition on leaf functional traits of Rhus typhina. Polish Journal of Environmental Studies 25: 1279‒1284. DOI: 10.15244/pjoes/61788.
30. Wang CY*, Jiang K, Wu BD, Zhou JW. 2018. The combined treatments of Canada goldenrod leaf extracts and cadmium pollution confer an inhibitory effect on seed germination and seedling development of lettuce. Australian Journal of Botany 66: 331‒337. DOI: 10.1071/BT18046.
31. Wang CY*, Zhou JW, Xiao HG, Liu J, Wang L. 2017. Variations in leaf functional traits among plant species grouped by growth and leaf types in Zhenjiang, China. Journal of Forestry Research 28: 241‒248. DOI: 10.1007/s11676-016-0290-6.
32. Wang CY*, Jiang K, Zhou JW, Liu J. 2017. Allelopathic suppression by Conyza canadensis depends on the interaction between latitude and the degree of the plant’s invasion. Acta Botanica Brasilica 31: 212‒219. DOI: 10.1590/0102-33062017abb0045.
33. Wang CY*, Liu J, Zhou JW. 2017. N deposition affects allelopathic potential of Amaranthus retroflexus with different distribution regions. Anais da Academia Brasileira de Ciências 89: 919‒926. DOI: 10.1590/0001-3765201720160513.
34. Wang CY*, Liu J, Xiao HG, Zhou JW, Du DL. 2016. Floristic characteristics of alien invasive seed plant species in China. Anais da Academia Brasileira de Ciências 88: 1791‒1797. DOI: 10.1590/0001-3765201620150687.
35. Wang CY*, Liu J, Zhou JW, Xiao HG. 2017. Differences in leaf functional traits between exotic and native Compositae plant species. Journal of Central South University 24: 2468‒2474. DOI: 10.1007/s11771-017-3658-7.
36. Wang CY*, Zhou JW, Liu J, Xiao HG, Wang L. 2018. Differences in functional traits and reproductive allocations between native and invasive plants. Journal of Central South University 25: 516‒525. DOI: 10.1007/s11771-018-3756-1.
37. Wang CY*, Liu J, Xiao HG, Zhou JW, Du DL. 2017. Nitrogen deposition influences the allelopathic effect of an invasive plant on the reproduction of a native plant: Solidago canadensis versus Pterocypsela laciniata. Polish Journal of Ecology 65: 87‒96. DOI: 10.3161/15052249PJE2017.65.1.008.
38. Wang CY*, Xiao HG, Liu J, Wang L, Du DL*. 2015. Insights into ecological effects of invasive plants on soil nitrogen cycling. American Journal of Plant
8/16
Sciences 6: 34‒46. DOI: 10.4236/ajps.2015.61005. 39.
Wang CY, Li HL (Eds.). 2024. Ecology and Management of Invasive Plants. Plants, MDPI AG, Grosspeteranlage 5, CH-4052, Basel, Switzerland; ISBN978-3-7258-2436-6 (Hardback); ISBN978-3-7258-2435-9 (PDF); DOI: 10.3390/books978-3-7258-2435-9.
40. Yu YL, Cheng HY, Wang CY*, Du DL*. 2023. Heavy drought reduces the decomposition rate of the mixed litters of two composite invasive alien plants. Journal of Plant Ecology 16: rtac047. DOI: 10.1093/jpe/rtac047.
41. Liu YJ, Wu HR, Wang CY, Cheng JL, Qiang S*. 2023. A comparative study reveals the key biological traits causing bioinvasion differences among four alien species of genus Veronica in China. Journal of Plant Ecology 16: rtac068. DOI: 10.1093/jpe/rtac068.
42. Si CC, Liu XY, Wang CY*, Wang L, Dai ZC, Qi SS, Du DL*. 2013. Different degrees of plant invasion significantly affect the richness of the soil fungal community. PLoS One 8: e85490. DOI: 10.1371/journal.pone.0085490.
43. Cui MM, Wang JJ, Zhang XF, Wang CY, Li GL, Wan JSH*, Du DL*. 2023. Warming significantly inhibited the competitive advantage of native plants in interspecific competition under phosphorus deposition. Plant and Soil 486: 503‒518. DOI: 10.1007/s11104-023-05887-x.
44. Liu YS, Du YZ, Li C, Li Y, Wang CY*, Du DL. 2025. Co-invasion of three invasive alien plants increases plant taxonomic diversity and community invasibility. Plant Diversity DOI: 10.1016/j.pld.2025.05.013.
45. Yu YL, Cheng HY, Wang S, Wei M, Wang CY*, Du DL*. 2022. Drought may be beneficial to the competitive advantage of Amaranthus spinosus. Journal of Plant Ecology 15: 494‒508. DOI: 10.1093/jpe/rtac001. (ESI Hot Paper and ESI Highly Cited Paper) (JPE Best Paper (2022))
46. Wang S, Cheng HY, Wei M, Wu BD, Wang CY*. 2020. Litter decomposition process dramatically declines the allelopathy of Solidago canadensis L. on the seed germination and seedling growth of Lactuca sativa L. International Journal of Phytoremediation 22: 1295‒1303. DOI: 10.1080/15226514.2020.1765140.
47. Wang S, Wei M, Wu BD, Cheng HY, Wang CY*. 2020. Combined nitrogen deposition and Cd stress antagonistically affect the allelopathy of invasive alien species Canada goldenrod on the cultivated crop lettuce. Scientia Horticulturae 261: 108955. DOI: 10.1016/j.scienta.2019.108955. (ESI Hot Paper and ESI Highly Cited Paper)
48. Yu YL, Cheng HY, Xu ZL, Zhong SS, Wang CY*, Guo EH*. 2022. Invasion intensity modulates the allelopathic impact of Solidago canadensis L. leaves and roots against Lactuca sativa L. during germination and early seedling stage.
9/16
International Journal of Environmental Research 16: 48. DOI: 10.1007/s41742-022-00428-3. 49.
Wei M, Wang S, Wu BD, Cheng HY, Wang CY*. 2020. Heavy metal pollution improves allelopathic effects of Canada goldenrod on lettuce germination. Plant Biology 22: 832‒838. DOI: 10.1111/plb.13126.
50. Cheng HY, Wang S, Wei M, Yu YL, Wang CY*. 2021. Effect of leaf water extracts of four Asteraceae alien invasive plants on germination performance of Lactuca sativa L. under acid deposition. Plant Ecology 222: 433‒443. DOI: 10.1007/s11258-021-01117-5.
51. Wei M, Wang S, Cheng HY, Wu BD, Wang CY*. 2020. The mixed silicon and cadmium synergistically impact the allelopathy of Solidago canadensis L. on native plant species Lactuca sativa L. Ecotoxicology 29: 1095‒1104. DOI: 10.1007/s10646-020-02251-y.
52. Wei M, Wang S, Wu BD, Cheng HY, Wang CY*. 2020. Combined allelopathy of Canada goldenrod and horseweed on the seed germination and seedling growth performance of lettuce. Landscape and Ecological Engineering 16: 299‒306. DOI: 10.1007/s11355-020-00421-y.
53. Wu BD, Zhang HS, Jiang K, Zhou JW, Wang CY*. 2019. Erigeron canadensis affects the taxonomic and functional diversity of plant communities in two climate zones in the North of China. Ecological Research 34: 535‒547. DOI: 10.1111/1440-1703.12024.
54. Du YZ, Liu YS, Li Y, Li C, Wang CY*, Cheng HY, Du DL. 2025. The invasive tree Rhus typhina L. decreases plant diversity and richness but increases plant functional diversity in the invaded communities. Biologia 80: 1647‒1658. DOI: 10.1007/s11756-025-01923-6.
55. Cheng HY, Wang S, Wei M, Yu YL, Wang CY*. 2021. Alien invasive plant Amaranthus spinosus mainly altered the community structure instead of the α diversity of soil N-fixing bacteria under drought. Acta Oecologica 113: 113: 103788. DOI: 10.1016/j.actao.2021.103788.
56. Yu YL, Zhong SS, Xu ZL, Xu ZY, Wang CY*, Du DL*. 2023. Does the salt stress intensify the independent allelopathy and the co-allelopathy of Solidago canadensis L. and Conyza canadensis (L.) Cronq.? South African Journal of Botany 153: 37‒45. DOI: 10.1016/j.sajb.2022.12.015.
57. Yu YL, Cheng HY, Wei M, Wang S, Wang CY*. 2022. Silver nanoparticles intensify the allelopathic intensity of four invasive plant species in the Asteraceae. Anais da Academia Brasileira de Ciências 94: e20201661. DOI: 10.1590/0001-3765202220201661.
10/16
58.
Wang S, Wei M, Cheng HY, Wu BD, Du DL, Wang CY*. 2020. Indigenous plant species and invasive alien species tend to diverge functionally under heavy metal pollution and drought stress. Ecotoxicology and Environmental Safety 205: 111160. DOI: 10.1016/j.ecoenv.2020.111160.
59. Liu YS, Du YZ, Li C, Li Y, Xu ZL, Wang CY*, Du DL. 2025. Invasive plants can modify the soil environment through litter decomposition. Environmental Conservation
60. Li C, Li Y, Xu ZY, Liu YS, Zhong SS, Wang CY*, Du DL*. 2024. The nitrogen-sulfur ratio of acid rain modulates the leaf- and root-mediated co-allelopathy of Solidago canadensis. Ecotoxicology 33: 893‒904. DOI: 10.1007/s10646-024-02788-2.
61. Cheng HY, Wu BD, Yu YL, Wang S, Wei M, Wang CY*, Du DL. 2021. The allelopathy of horseweed with different invasion degrees in three provinces along the Yangtze River in China. Physiology and Molecular Biology of Plants 27: 483‒495. DOI: 10.1007/s12298-021-00962-y.
62. Yang B, Cui MM, Du YZ, Ren GQ, Li J, Wang CY, Li GL, Dai ZC, Rutherford S, Wan JSH*, Du DL*. 2022. Influence of multiple global change drivers on plant invasion: Additive effects are uncommon. Frontiers in Plant Science 13: 1020621. DOI: 10.3389/fpls.2022.1020621.
63. Wang S, Wei M, Wu BD, Jiang K, Du DL, Wang CY*. 2019. Degree of invasion of Canada goldenrod (Solidago canadensis L.) plays an important role in the variation of plant taxonomic diversity and community stability in eastern China. Ecological Research 34: 782‒789. DOI: 10.1111/1440-1703.12049.
64. Zhong SS, Xu ZL, Li Y, Li C, Yu YL, Wang CY*, Du DL*. 2023. What modulates the impacts of acid rain on the allelopathy of the two Asteraceae invasives? Ecotoxicology 32: 114‒126. DOI: 10.1007/s10646-023-02623-0.
65. Wu BD, Wang L, Wei M, Wang S, Jiang K, Wang CY*. 2019. Silver nanoparticles reduced the invasiveness of redroot pigweed. Ecotoxicology 28: 983‒994. DOI: 10.1007/s10646-019-02097-z.
66. Cheng HY, Wang S, Wei M, Wu BD, Du DL, Wang CY*. 2021. Reproductive allocation of Solidago canadensis L. plays a key role in its invasiveness across a gradient of invasion degrees. Population Ecology 63: 290‒301. DOI: 10.1002/1438-390X.12091.
67. Wu RM, Wu BD, Cheng HY, Wang S, Wei M, Wang CY*. 2021. Drought enhanced the allelopathy of goldenrod on the seed germination and seedling growth performance of lettuce. Polish Journal of Environmental Studies 30: 423‒432. DOI: 10.15244/pjoes/122691.
68. Li Y, Li C, Zhong SS, Xu ZL, Yu YL, Wang CY*, Du DL*. 2024. Does salt stress
11/16
intensify the allelopathic effect of four Asteraceae invasive plants? Polish Journal of Ecology 71: 59–74. DOI: 10.3161/15052249PJE2023.71.2.002. 69. Wei M, Wang S, Xiao HG, Wu BD,
Jiang K, Wang CY*. 2020. Co-invasion of daisy fleabane and Canada goldenrod pose synergistic impacts on soil bacterial richness. Journal of Central South University 27: 1790‒1801. DOI: 10.1007/s11771-020-4408-9.
70. Wei M, Wang S, Wu BD, Jiang K, Zhou JW, Wang CY*. 2020. Variability of leaf functional traits of invasive tree Rhus typhina L. in North China. Journal of Central South University 27: 155‒163. DOI: 10.1007/s11771-020-4285-2.
71. Yu YL, Xu ZL, Zhong SS, Cheng HY, Guo EH*, Wang CY*. 2023. The co-invasion of the three Asteraceae invasive plants can synergistically increase soil phenol oxidase activity. Biology Bulletin 50: 467‒473. DOI: 10.1134/S1062359022601045.
72. Xu ZL, Zhong SS, Yu YL, Wang YY, Cheng HY, Du DL*, Wang CY*. 2023. Rhus typhina L. triggered greater allelopathic effects than Koelreuteria paniculata Laxm under ammonium fertilization. Scientia Horticulturae 309: 111703. DOI: 10.1016/j.scienta.2022.111703.
73. Liu YS, Du YZ, Li Y, Li C, Zhong SS, Xu ZL, Wang CY*, Du DL*. 2024. Does Bidens pilosa L. affect carbon and nitrogen contents, enzymatic activities, and bacterial communities in soil treated with different forms of nitrogen deposition? Microorganisms 12: 1624. DOI: 10.3390/microorganisms12081624.
74. Li Y, Li C, Liu YS, Zhang HS*, Xu ZL, Zhong SS, Wang CY*, Du DL*. 2025. Does drought have a significant impact on the allelopathy of invasive plant Bidens pilosa L. from two different distribution regions? Acta Physiologiae Plantarum 47: 23. DOI: 10.1007/s11738-025-03776-7.
75. Zhong SS, Xu ZL, Cheng HY, Wang YY, Yu YL, Du DL*, Wang CY*. 2023. Does drought stress intensify the allelopathy of invasive woody species Rhus typhina L.? Trees 37: 811–819. DOI: 10.1007/s00468-022-02385-y.
76. Zhong SS, Xu ZL, Yu YL, Liu J, Wang YY, Guo EH*, Wang CY*. 2023. Rhus typhina decreased soil nitrogen contents and peroxidase activity following the addition of nitrogen. International Journal of Environmental Science and Technology 20: 9089–9098. DOI: 10.1007/s13762-022-04543-8.
77. Wu BD, Wang S, Wei M, Zhou JW, Jiang K, Du DL, Wang CY*. 2019. The invasive tree staghorn sumac affects soil N2-fixing bacterial communities in north China. Plant Biology 21: 951‒960. DOI: 10.1111/plb.13003.
78. Lu YJ1, Wang YF1, Wu BD, Wang S, Wei M, Du DL, Wang CY*. 2020. Allelopathy of three Compositae invasive alien species on indigenous Lactuca
12/16
sativa L. enhanced under Cu and Pb pollution. Scientia Horticulturae 267: 109323. DOI: 10.1016/j.scienta.2020.109323. 79. Zhou JL, Xu ZL, Zhong SS, Yu YL, Xu ZY, Du DL*, Wang CY*. 2022. Nitrogen influence to the independent invasion and the co-invasion of Solidago canadensis and Conyza canadensis via intensified allelopathy. Sustainability 14: 11970. DOI: 10.3390/su141911970.
80. Xu ZY, Xu JJ, Chen PB, Zhong SS, Xu ZL, Yu YL, Wang CY*, Du DL*. 2023. Heavy metal pollution is more conducive to the independent invasion of Solidago canadensis L. than the co-invasion of two Asteraceae invasive plants. Acta Oecologica 120: 103934. DOI: 10.1016/j.actao.2023.103934.
81. Wei M, Wang S, Xiao HG, Wu BD, Jiang K, Du DL, Wang CY*. 2020. Stand-alone or co-occurring invasive plant species do not modify the diversity of the soil N2-fixing bacterial community. Plant Ecology & Diversity 13: 277‒287. DOI: 10.1080/17550874.2020.1729887.
82. Chen Q, Du YZ, Liu YS, Li Y, Li C, Xu ZL, Wang CY*. 2025. Species number of invasive plants negatively regulates carbon contents, enzyme activities, and bacterial alpha diversity in soil. Phyton DOI: 10.32604/phyton.2025.065970.
83. Xu ZL, Zhong SS, Yu YL, Wang YY, Liu J, Guo EH*, Wang CY*. 2023. Drought stress intensifies the phytotoxicity of five Asteraceae exotic invasive plants. Israel Journal of Plant Sciences 70: 162‒172. DOI: 10.1163/22238980-bja10078.
84. Zhang HY, Goncalves P, Copeland E, Qi SS, Dai ZC*, Li GL, Wang CY, Du DL*, Thomas T. 2020. Invasion by the weed Conyza canadensis alters soil nutrient supply and shifts microbiota structure. Soil Biology and Biochemistry 143: 107739. DOI: 10.1016/j.soilbio.2020.107739.
85. Zhang HS*, Li C, Li Y, Xu ZL, Zhong SS, Du DL, Wang CY*. 2024. Drought stress intensifies the allelopathy exerted by the belowground part more than the aboveground part: A case study based on Solidago canadensis L. Polish Journal of Ecology 72: 15–33. DOI: 10.3161/15052249PJE2020.72.1.0002.
86. Zhong SS, Xu ZL, Yu YL, Cheng HY, Wang S, Wei M, Du DL*, Wang CY*. 2022. Acid deposition at higher acidity weakens the antagonistic responses during the co-decomposition of two Asteraceae invasive plants. Ecotoxicology and Environmental Safety 243: 114012. DOI: 10.1016/j.ecoenv.2022.114012.
87. Xu ZL1, Zhong SS1, Yu YL, Li Y, Li C, Xu ZY, Liu J, Wang CY*, Du DL*. 2023. Heavy metal contamination alters the co-decomposition of leaves of the invasive tree Rhus typhina L. and the native tree Koelreuteria paniculata Laxm. Plants 12: 2523. DOI: 10.3390/plants12132523.
88. Xu ZL1, Zhong SS1, Li Y, Li C, Liu J, Xu ZY, Zhu MW, Wang CY*, Du DL*. 2023. The co-phytotoxicity of two Asteraceae invasive plants Solidago canadensis
13/16
L. and Bidens pilosa L. with different invasion degrees. Ecotoxicology 32: 1221–1232. DOI: 10.1007/s10646-023-02716-w. 89.
Li Y, Li C, Zhong SS, Xu ZL, Liu J, Xu ZY, Zhu MW, Wang CY*, Du DL*. 2024. Is the invasive plant Amaranthus spinosus L. more competitive than the native plant A. tricolor L. when exposed to acid deposition with different sulfur–nitrogen ratios? Atmosphere 15: 29. DOI: 10.3390/atmos15010029.
90. Li C, Li Y, Xu ZY, Zhu MW, Wei YQ, Xu ZL, Zhong SS, Wang CY*, Du DL*. 2025. Invasive Amaranthus retroflexus obtains a competitive advantage over native A. tricolor under the addition of A. retroflexus leaf litter. Ecological Research DOI: 10.1111/1440-1703.12539.
91. Li Y, Li C, Xu ZY, Liu YS, Zhong SS, Xu ZY, Liu J, Wang CY*, Du DL*. 2025. Soil bacterial community could be affected by Amaranthus retroflexus L. Biologia Futura DOI: 10.1007/s42977-025-00254-6.
92. Li C, Li Y, Zhong SS, Xu ZL, Xu ZY, Zhu MW, Wei YQ, Wang CY*, Du DL*. 2024. Do the leaves of multiple invasive plants decompose more easily than a native plant’s under nitrogen deposition with different forms? Nitrogen 5: 202–218. DOI: 10.3390/nitrogen5010014.
93. Li C, Li Y, Xu ZL, Zhong SS, Cheng HY, Liu J, Yu YL, Wang CY*, Du DL*. 2024. The effects of co-invasion by three Asteraceae invasive alien species on plant taxonomic and functional diversity in herbaceous ruderal communities in southern Jiangsu, China. Biologia Futura 75: 205–217. DOI: 10.1007/s42977-024-00202-w.
94. Zhang HS*, Li C, Li Y, Xu ZL, Zhong SS, Liu J, Du DL, Wang CY*. 2024. Relationship between plant diversity and community stability and invasibility in the heterogeneous landscape of urban habitats undergoing Solidago canadensis invasion. Plant Ecology & Diversity 17: 75–84. DOI: 10.1080/17550874.2024.2372713.
95. Li C, Li Y, Liu YS, Zhong SS, Zhang HS*, Xu ZL, Xu ZY, Du DL*, Wang CY*. 2024. Does atmospheric nitrogen deposition confer a competitive advantage to invasive Bidens pilosa L. over native Pterocypsela laciniata (Houtt.) Shih? Atmosphere 15: 825. DOI: 10.3390/atmos15070825.
96. Li C, Li Y, Xu ZL, Zhong SS, Liu J, Xu ZY, Zhu MW, Wei YQ, Wang CY*, Du DL*. 2024. Allelopathy of native Pinus massoniana Lamb. on invasive species: stronger effect on Amaranthus retroflexus L. than on Celosia argentea L. Polish Journal of Ecology 71: 103–114. DOI: 10.3161/15052249PJE2023.71.4.001.
97. Li Y, Li C, Cheng HY, Xu ZL, Zhong SS, Zhu MW, Wei YQ, Xu ZY, Du DL, Wang CY*, Zhang HS*. 2024. Litter mass loss of the invasive Rhus typhina L.
14/16
and native Koelreuteria paniculata Laxm. trees alters soil N-fixing bacterial community composition under different N forms. Atmosphere 15: 424. DOI: 10.3390/atmos15040424.
98.
He CJ, Li Y, Li C, Wang YY, Xu ZL, Zhong SS, Xu ZY, Yu YL, Du DL, Wang CY*. 2023. Photosynthetic capacity of Erigeron canadensis L. may be more critical to its growth performance than photosynthetic area. Biologia 78: 1315–1321. DOI: 10.1007/s11756-023-01317-6.
99. Huang P*, Xu ZW, He WJ, Yang H, Li B, Ding WD, Lei YZ, Abbas A*, Hameed R, Wang CY, Sun JF, Du DL*. 2024. The cooperation regulation of antioxidative system and hormone contents on physiological responses of Wedelia trilobata and Wedelia chinensis under simulated drought environment. Plants 13: 472. DOI: 10.3390/plants13040472.
Fund Projects
1. National Natural Science Foundation of China (Grant No.: 31300343, 2014/01‒2016/12)
2. Sub-project of National Key Research & Development Program of China (Grant No.: 2016YFC0502002-2, 2016/07‒2020/12)
3. Natural Science Foundation of Jiangsu, China (Grant No.: BK20130500, 2013/07‒2016/06)
4. Universities Natural Science Research Project of Jiangsu, China (Grant No.: 13KJB610002, 2013/08‒2015/12)
5. Open Science Research Fund of State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, China (Grant No.: Y20160023, 2016/06‒2019/05)
6. Open Science Research Fund of Key Laboratory of Ocean Space Resource Management Technology, Marine Academy of Zhejiang Province, China (Grant No.: KF-2024-112, 2024/10‒2026/09)
7. Open Science Research Fund of Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, China (Grant No.: 2017-FDU-01, 2017/05‒2017/12)
8. Open Science Research Fund of State Key Laboratory of Pollution Control and Resource Reuse (Tongji University), China (Grant No.: PCRRF17015, 2018/04‒2020/04)
9. Open Science Research Fund of State Key Laboratory of Pollution Control and Resource Reuse (Tongji University), China (Grant No.: PCRRF19009, 2020/02‒2022/02)
10. Open Science Research Fund of State Key Laboratory of Tree Genetics and
15/16
Breeding (Northeast Forestry University), China (Grant No.: K2020205, 2020/07‒2022/12) 11. Open Science Research Fund of Key Laboratory of Forest Plant Ecology, Ministry of Education (Northeast Forestry University), China (Grant No.: K2020B02, 2021/01‒2022/12)
12. Open Science Research Fund of Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration (East China Normal University, China (Grant No.: SHUES2020A03, 2020/05‒2021/12)
13. Open Science Research Fund of State Key Laboratory of Environmental Geochemistry Institute of Geochemistry, Chinese Academy of Sciences, China (Grant No.: SKLEG2019721, 2019/01‒2019/12)
14. Research Foundation for Chinese Society Academic Degrees and Graduate Education (Grant No.: 2015Y11, 2015/07‒2017/03)
15. Project of Philosophy and Social Science Research of Jiangsu, China (Grant No.: 2018SJA1043, 2018/07‒2021/06)
16. Key Research and Development Program of Changzhou, Jiangsu, China (Grant No.: CJ20200013, 2020/05‒2022/05)
17. Gusu District Biodiversity (Plant) Survey Project (Grant No.: HX20220352, 2022/04‒2024/06)
18. Research Project on the Application of Invasive Plants in Soil Ecological Restoration in Jiangsu (Grant No.: 20240110; 2024/01‒2027/12)
19. Research Project on the Application of Invasive Plants in Ecological Restoration of Heavy Metals in Coastal Soil in Jiangsu (Grant No.: 20250444; 2025/06‒2029/12)
20. Quality Control Technical Service of Agricultural Invasive Plant Survey in Changzhou City (Grant No.: HX20231135, 2023/07‒2024/03)
21. Quality Control Technical Service of Agricultural Invasive Plant Survey in Dongtai District, Yancheng City (Grant No.: HX20230144, 2023/03‒2023/12)
22. Quality Control Technical Service of Agricultural Invasive Plant Survey in Jingkou District, Zhenjiang City (Grant No.: HX20230265, 2023/04‒2023/12)
23. Quality Control Technical Service of Agricultural Invasive Plant Survey in Runzhou District, Zhenjiang City (Grant No.: HX20230268, 2023/04‒2023/12)
24. Quality Control Technical Service of Agricultural Invasive Plant Survey in Zhenjiang New Area (Grant No.: HX20230269, 2023/04‒2023/11)
25. Foundation of Work Plan of Water Pollution Prevention and Control Action of Zhenjiang, Jiangsu, China (Grant No.: No, 2015/09‒2016/06)
26. Applied Research Project of Social Science of Zhenjiang (Special Subject of Legal Studies), Jiangsu, China (Grant No.: 2020FX12, 2020/07‒2021/